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Abstract—An analytical analysis of free vibrations of a heated orthotropic rectangular thin plate
under vanious boundary conditions is presented. The nonlinear governing equations are derived
from von Kirmén plate theory and Berger's analysis separately; from them the Duffing-type
nonhinear ordinary equations are then obtained by employing Galerkin's method using one-term
approximation. The methods of successive approximation and complete elliptic cosine are ap-
plied to solve the nonlinear equations. The influence of temperature changes and large ampli-
tudes on the period of free vibrations are established; also the buckling temperature 1s obtained.
The analytical solutions are compared with numerical results from Runge-Kutta method. Two
different approaches to lineanze thermoelastic plate equations are considered and compared.
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NOTATION

length, width and thickness of the rectangular plate, respectively.
the first and second strain invanant of midplane of isotropic plate, respectively.
total energy of plate.
Young's moduh for an orthotropic material.
shear modulus.
h12
| aTd

h72

hi2
f ZAT dz.
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time.
temperature.
a reference temperature.

nonlinear and linear peniod of plate vibration, respectively.
displacements.

Cartesian coordinates.

initial thermal deflection zo = 2o(7).

amplitudes on upper and lower directions of plate, respectively.
coefficient of linear thermal expansion for isotropic matenal.
coefficients of linear thermal expansion for an orthotropic matenal.
strain and stress components, respectively.

a frequency parameter.

Poisson's ratios for an orthotropic material.

plate density.

dimensionless time.

frequency of plate linear vibration at AT = 0.

frequency of plate nonlinear vibration
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1. INTRODUCTION

Many thermoelastic problems have been treated by Nowacki[l] and Boley and Wei-
ner{2]. Thermomechanically coupled vibrations of isotropic elastic plates were inves-
tigated by Nowacki[1], Cuki¢[3] and Chang{4]. Uncoupled vibrations were investigated
by Sunakawal[5], Pal{6] and Bailey[7]. However, there are only a few investigations in
the literature dealing with thermal stresses in orthotropic plates. Chang{8] has done a

t Present address: Department of Mechanical Engineering, Sze-Hai Junior College of Technology.
Taipei, Tawan.
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coupled analysis for an orthotropic rectangular plate. Bailey[9] has considered un-
coupled linear vibration of heated orthotropic rectangular plate both numerically
and experimentally. Pal{10] has analyzed uncoupled nonlinear vibrations of an
orthotropic circular plate based on Berger’s approximation method[11}.

The purpose of this work is to present analytical methods to investigate the influ-
ence of temperature field on the free vibration of thermally stressed orthotropic rec-
tangular plate with various boundary conditions. It is known that in linear uncoupled
thermoelastic analysis (small deformation) the effect of temperature is treated as a body
force[2], thus it cannot affect the natural frequencies of free vibration of an elastic
body. And the only influence of temperature field in such an analysis is limited to forced
vibration. Therefore, only either the nonlinear or the coupled linear analysis can be
used to investigate the problem of thermal influence on plate free vibration. However,
in uncoupled free vibration analysis, generally we have to take temperature field in-
dependent of time, so as to avoid a forced vibration problem.

In this paper, only the uncoupled case will be studied. And to avoid confusion in
what follows, the terms ‘‘coupled’” and *‘uncoupled’’ will be restricted to represent the
coupling between the three displacement components u, v, W of the plate, unless
otherwise specified for interdependence of temperature and displacement fields.

Here the following methods are employed to study the proposed problem:

(i) Von Kédrmén’'s nonlinear plate theory is used to derive three coupled governing
equations for the plate vibration, by using Galerkin's technique and method of
successive approximation to obtain a one-term approximate solution.

(ii) Berger’s nonlinear plate analysis method is used to derive uncoupled quasi-linear
equations for the plate, which is solved by using the same method as in case (i).

(iii) A method of direct linearization of von Karmén's theory is used to obtain a coupled
linear solution.
(iv) A method of further uncoupling the linearized equations in (iii) is used to obtain

a single linear equation for plate flexural vibration.

2. PROBLEM DESCRIPTION

Consider a rectangular thin plate with thickness & and edge lengths a and b. The
midplane of the plate coincides with xy plane of an orthogonal Cartesian coordinate
system. The following assumptions are made:

(i) The plate is made of orthotropic linear elastic material, obeys generalized Hooke's
law; the plate geometrical axes of symmetry and the material elastic axes of sym-
metry coincide.

(ii) All the material properties are independent of temperature and are taken as
constants.

(iii) The transverse shear, rotatory inertia and in-plane longitudinal inertia of the plate
are neglected.

(iv) The plate is very thin, so the lateral displacement of the plate can be represented
by the lateral displacement W of the midplane.

(v) Temperature field is assumed to be a known function and satisfies appropriate
thermal boundary conditions.

(vi) The plate is intially bent due to thermal stresses and the initial deflection at center
of the plate is zo; z; and z2 denote upward (+z) and downward (—2z) central am-
plitude, respectively. When the initially heated deflection 2, equals zero, the up-
ward and downward amplitudes are equal (z; = z2).

The stress—strain constitutive relation for orthotropic material at plane-stress
state is

Tx E:I‘}L E)VZ‘/}L 0 €y — (XXAT
oy, | = Ey/p 0 € — a,AT |, ¢}
Oxy symm. Gz 2e,,

where o = 1 — va1v)2, Ejvy = Esvia.
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For large-deformation plate analysis, the strain-displacement relations are

€ = Gg - Wy = Uy + iwfx - Wosa,s
€ = 53 - Zw’yy = Uy + iwey - zw’)’)" (2)
€xy = egy - zw,xy = (“1y + U + W’xw’y) = Zw,xy’
where €2, €2, €, are strain components on the midplane.
The boundary conditions to be satisfied for different cases are
(i) all-edge simply supported (s)
W =0, u =90, Oy = 0,

vax + v2|W,y,, + (a,, + V2|QV)MT =0 at x = 0, a,

(3)
W =0, v =0, oy = 0,
Woee + vlzwvyv + (ay + vlzax)MT =0 at y=0,b;
(ii) all-edge clamped (c)
W =0, u=90, Oxy = 0, Wo=0 a x=0,a @)

W =0, v=20, oy = 0, W,=0 at y=0,b;

(iii) simply supported on a pair of opposite edges and remaining edges clamped (Mixed,
M)
W =0, u=20, Oy =0
W + vaWyy + (0 + vaay) M =0, at x=0,a, (5)

W, =0, W=0, v=0o0,=0at y=0,b.

3. NONLINEAR ANALYSIS

3.1. Von Kérmdn plate theory

From von Kdrmén's nonlinear plate theory, the governing equations for free
vibration of a thermoelastic plate are

Uue + Ci\NUymn + CaAToen — LN
= =8 (W, + CINW, )W — G820\ W, W,,, (6)
CiUye + C3AT,qq + CoMliyen — LoANT,
= =3C W, + C:A*W, )W, h — oA W, W, (7)

W»é&ﬁi + 2C4)‘2W’£€1m + CB)“Wmvmﬂ + Wv-n = “(1/52)(14-57;'5; + szz'ﬂ_d?m.

- (128 L\N" W, + L:2A3NTW,) + (12/62) T + (822)W2) (W
2y 2
+ v A W, ) + (12/62) (m,,, + %"— Wf,,) (vu W, + CA*W,,,)

+ (24C\/8%)(NTi,qy + Tog + AW, W, AW,.,,, (8)

where the following relations and dimensionless terms are used:
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“GEZ Ez
C) = -, Cy = + Cy, Cs ==
1 E, Vi 1 =K E;
(h = vy + 2Ch g = Lb. mn =;Wb. d = th
A = alb, W = Wih, u = ula, v = va, 9

Ly = a, + v3a,, L, = vya, + Ciay, Ly = I|Ty,
L, = bT,, NT=NTIT,, M"=MT"IT,,
, D, Eh?

Ci=-—%, 1=Cpt, Dy=-—%

pha 12’

and the temperature functions M7 and N7 are given.

Assuming the temperature field to be symmetrical, we may expand the given spatial
functions N7 and M7 in double Fourier series

N7, ) = 2 2 Aumn COS 2mmx cos ZnT-n) , (10)
m=0 n=0
M7, m) = 2 E B sin 22 sin 9—;—)’ (1)

The flexural displacement W(§, v, 7) could be described to be of a separable form
by

WE n, 1) = & DWi(), (12)

where the shape function &(£, m) must satisfy plate boundary conditions, and W, (1) 15
to be determined. The shape function &(¢, v) for different boundary conditions may
be assumed as

(i) all-edge simply supported (s)

H(E, 1) = sin né sin wy; (13)
(1) all-edge clamped (c)
o, ) = sin? wk sin® 7y (14)
(iii) mixed (M)
&€, m) = sin 7€ sin® w. (15)

One notes that all nonlinearities in eqns (6) and (7) are on the right-hand side, thus
if W is treated as known function, then eqns (6) and (7) become linear equations forw
and 7. And there exist two solutions for # and ¥; a static solution due to input of N7,
and a quasi-static one due to input W. We will now proceed with all-edge simply sup-
ported plate to demonstrate the solution process.

To satisfy the boundary conditions, the displacement 7 has to be even (odd) func-
tion in n(§) with respect to = 4 (£ = §) while ¥ has to be an even (odd) function in
&(m) with respect to £ = ¥(n = H[12], and therefore the static solutions %, and %, can
be described by

i
—
»
3
1l
L
—
»

T, M) = X D U sin 2mug cos 2nmm  m
(16)

t
=
b
—
»
=
i
-
~

BlE, M) = 2 D Umn €OS 2@mE sin 2um = m
u7n
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Inserting eqn (10) and eqns (16) and (17) into eqns (6) and (7), .. and v,,, are solved
as
_ (A,,,,,/Z‘IT)[L|m(C|m2 + Cj\)\znz) - Cg)\szmnz]
Honn = (m?* + C\N2n?2)(Cim? + C3N?n?) — C3IN*m?n?

_ (AmB2mILnGr? + CNn?) = CaALimin]
Unin (mz + C|)\2n2)(C|m2 + C3A2n2) — C§A2m2n2 .

(18)

(19)

The quasi-static part of eqns (6) and (7) are of the form
Tue + CiN Ty + Cohlygn = —(w/4)82W3(r)(1 + C(\?) sin 27€ cos 27
— (w*/4)C*52\*W3(7) sin 2nE cos 21
+ (W) W3i(T)(1 + CiA? — CoA?) sin 2nE,  (20)
CiTve + CihTypn + Colllyen = (W32 W3()(C:N + CIA — Ca)) sin 27
~ (W) W3(1)(C3A* + C\h + C:M) sin 27 cos 27wE.  (21)

Using method of undetermined coefficient, we may obtain the quasi-static solutions

nWi(7)

s, M, 1) = 16 d%[cos 27 + v A% — 1] sin 27E, (22)
w2 21

vaE, M, T) = T Wit) 5% | A cos 2wt + 2 A|sin 2. (23)
16 Ci\

Henceforth, the solutions for 7 and v are
Ti(g’ N, T) = E3 + Ed’ ﬁ(gs n, T) = 53 + T)d' (24)

Next, we will insert the solutions 7 and 7 from egn (24) and W into flexural vibration
governing eqn (8), by using Galerkin's technique:

[ | 1@ 5. Wi, w de dy = 0 25)

to obtain the Duffing-type nonlinear ordinary differential equation

Wi(1) + 701 + 2C\2 + CaA W (1) = $m*Wi(r) [—3 + lcg-‘l — 4uy N2
+ N3, - 3C3)] + 6‘“_3?8?2 (1 + v A2} 2uro — un] - 6‘"3_—%2
X Mvar + CaN?][2voy = vi1] — 12173@ [CiN2uyy + CiAvyy]
+ 3w Wg?’ [Ly + LA*)4A00 — 2401 — 2410 + Au] + F.. (26)
where
F, =;—§L'f" +"5'—§Li"23... (27)

Similarly the single-mode equation for other boundary conditions will be Duffing-
type equation of the same kind.

SAS 22.3-C
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3.2. Berger's method
The strain energy for a thermoelastic orthotropic rectangular plate s of the form

3
U= f {(Enh/p.)le - 2k — va)e3] + ’f‘z” [wf..' * GWin + o W W,
2Eh
+ 4 ."'GIZ W%“] - _—_IIIE\' + 12€ ]N7 + E-l— [Il X + lzw"‘]M1 dA
E, " 6p
(28)
where
ef =€ + Ke), e = €he) - o

Ei((K — va)) Cxv -

According to Berger’s approximation approach for isotropic plate analysis, when
the second strain invariant of the midplane e; = €2¢?, is neglected in the plate strain
energy, decoupled simple quasi-linear equations can be obtained, which simplifies the
analysis greatly. However, in orthotropic plate analysis, neglecting the true second
strain invariant of the mndplane e; from the strain energy does not provide s:mllar
simplification. In order to gain similar advantages of Berger's method, a quantity es
is chosen for orthotropic plate, which will play the same role as e, in isotropic case[13].
Thus the Berger's governing equations for plate free vibration can be deduced from
applying variation theorems as

DiW,iree + 2HW, 1y + DyW,p, + (12DRD)[—(eT W, ux + LINTW, 1),
+ (12D /R [ - K(etW,,).s + LINTW,,),,] + (D/R)LWMT + bMT]  (29)
+ phW,, = g(x, y, 1),
—efe + LNT, = 0, (30)
-Kel,, + LN, =0, 31)

where

D. = E\h* /12, D, = E:h3/12p.,
H = E|Vz|h3/12u + G|2h3/6.

The major contribution of Berger’s method for isotropic plate analysis 1s to yield
an uncoupled quasi-linear governing equation for flexural amplitude W. When it is
applied to thermoelastic orthotropic plate analysis, certain restrictions on eqns (29)-
(31) must be made to acquire the similar benefit from Berger’s method; such as
(i) Iy = L/K, the isotropic case, or
(ii) N7 = constant.

Therefore, we will limit the use of Berger's method to taking N/ as a constant in our
analysis.

After integrating eqns (29)—(31) over plate area, with use of boundary conditions
and Green's theorem to get rid of the terms involving « and v; then through non-
dimensionalization, we obtain a single nonlinear equation:

W’EEEE + 2(4)‘2W'Ehn + C3A4W'nnnn + Ww-r + (|2/82)l“e’:t + L|N1] W.gg

2
12)‘ = [-Kel + LiN"IW,,, = —(1/83)[Li Ml + LaA*MT,,], (32)
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where
] | S, —
el = —(SZ/Z)L L WIW. + KNW 0] dE dn

is a function of dimensionless time 7 only.

In Berger's analysis, the same boundary conditions (3)-(5) and the same assump-
tion (12)—(15) are used. Therefore, after application of Galerkin’s method, the Duffing-
type nonlinear differential equation is obtained for all-edge simply supported plate as

12N7
3%m?

+ (1 + KAD)T(32 + (3/2)KN2)W3(s) = 4F,. (33)

W](T) + 17‘ [] + 2C4X2 + C3>\4 - (L] + Lz)\z)] W|(1’)

For other boundary conditions, the similar Duffing-type equations can be produced.
3.3. Method of solution
It is not found that, regardless of boundary conditions, single-mode analysis re-

duces both von Kdrmin’s and Berger’s equations to a Duffing-type equation of the
general form

Wi + a Wi + asWie) = F, (34)
where a;, a3 and F are known constants.

Consider W,(1) as sum of the displacement zo,(T) due to the temperature change
and the isothermal amplitude of vibration Z(7) |;sothermai. as in [5, 6].

Wi(1) = 2o(T) + Z(T) |ssothermal- (35)

Inserting W(7) into eqn (34), two equations are then obtained: the equation correspond-
ing to the vibration state is

1) + (o) + 30328)Z(1) + 3@3207°(7) + a323(7) = 0, (36)

and the equation corresponding to the deflection state due to the temperature change
is

o1zo + a3z = F. 37)

Equation (37) can be solved directly for static solution z,.
Using the relation

A = Va; + 3aszh 7, (38)
eqn (36) is reduced to
d?Z/dA? + 2 + f22° + f1T = 0, (39)
where
_ 3aszo _ )
f2 = a; + 3aazd’ fs a; + 3aazd’

By using the transformation

0 =VI+BA, (40)
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eqn (39) 1s transformed into

d’z  _ - -
(1 + B)EF + 7= —-£7 - P (41)

Let z; and —z; be the maximum and minimum amplitude, respectively, of the
displacement Z; then, B and % are expanded in the power series of z; as

—Bizz + B2z3 — Bazd + -, (42)
-01(0)z2 + 020)23 — 03(0)23 + Qa(0)z3 . . . . (43)

B

z

Substituting eqns (42) and (43) in eqn (41), and using successive approximation method,
under the initial conditions

Q0 =1, Q00 = 05(0) = Q40) = -+ = 0,
(0 = 2:(0) = A3(0) = Qu(0) = - = 0,

final form becomes
- 1 1 25 21
10 - | -3+ fid- (Brt-Han)
25 29 1 29 1
+ ('3—6f‘z' —gf%fs) .. ] + [—Zz + ifzﬁ- (mf% —ﬁfa) 23

m 3‘__3_5 4 7103 4__1607 N __2__3___2 s
+(432f2 96f2f3)22 (20736f2 2304fzf3+1024f3 o+ cos 6

o 2.1
f23 -§f§23 + (gﬁ-gf:f:) 3

5 1 1
f-3an) e eostos [ - (g 35)

(3
I1p 1 s (3L, M pe 3 o) s
+(48f2+32f2f3)22 (576f2+384f2f3 128f3 2+ cos 36
a1 a_ (Lo 1o S
+[<432f2+96f2f3)22 (648f2+72fzf3 o+ cos 40
i (= i+ > fif +—l—f2 23+ |cosse (44)
20736° % ' 2304° %1 7 10247°) ¢ ‘

And the period of the motion is given by
5 ., 3 5 1
Pm=2wb+(Eﬁ—§h)é—(ﬁﬁ—zhh)d

385 0 _ 205 o 7 2) P
+<576f2 l92f2f3+256f" 3.... 45

Equations (44) and (45) form the solutions for eqn (41), and are influenced by the initial
deflection z, and initial amplitude z,. Next, the relation between z, and z> can be
established through energy conservation principle as

(dZ/dA)? + 22 + 4f27° + §f27* = 2E, (46)

where E is the total energy of the vibrating system.
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There exist extremum forZ at z = z, and — 2, when dZ/dA = 0, and this condition
reduces eqn (46) to

20+ $fazi + 3223 = 23U - $f2z2 + §f223) = 2E. 47)
Equation (47) thus can be used to determine z, and z, independently whenever Eis
given in accordance with the initial conditions.
When M7 = 0, eqn (37) gives zo = 0, and then eqn (36) can be reduced to a
standard Duffing equation as
2+ o + P =0, (48)
When mitial conditions Z(0) = A and %(0) = 0, the solution of eqn (48) is obtained as

i(x) = ACa(pr, k), (49)

where C, is complete elliptical cosine with

= z Xz(!;;
=V 2 = ——
14 [+ 3] + A [+ 3] k 2((!| + A2(13)

Also, the ratio between nonlinear period and linear period of plate free vibration is
established as

Ty _ 2V KK) 50
T, av o) + Aay '

where K(k) is the complete elliptic integral of the first kind with parameter &.

Here, the critical buckling temperature for thermally stressed orthotropic plate will
be introduced. Equation (34) is a so-called weak nonlinear differential equation, which
mcans that the coefficient a3 of nonlinear term influences plate vibration frequency
less than the coefficient «, of linear term. When linear vibration is considered (a; =
0), for positive values of a;{(a; > 0), we will have harmonic vibration; whereas for
negative values of a;(a; < 0), we will have hyperbolic solutions instead, i.e. the am-
plitude increases with time. Since «, is dependent on temperature, a; may be zero
when certain temperature is reached, and we shall call this temperature as a critical
temperature for the plate.

4. LINEAR ANALYSIS

4.1. Linearized coupled solution

When the nonlinear term in eqn (34) is deleted, a linearized coupled solution can
be obtained by solving the linear free-vibration equation:

W) + o, Wi(1) = 0, (51

which indicates that the obtained solution W, (1) is influenced by the in-plane displace-
ments ¥ and 7.

4.2. Single linear equation (uncoupled)

To delete the higher-order nonlinear terms from von Kdrmén’s plate governing
eqns (6)-(8) and further uncouple the interdependence of @, ¥ and W, an uncoupled
single linear differential equation for flexural displacement W can be established as

W,Eggg + ZCXZV_V,“,,,, + C;)\‘W,,m,m + W,"
= (= 128WLIN"W,e + LiNNW ), (52)
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which is identical to those derived by Parkus[i4] and used by Bailey|9]. In deriving
eqn (52) we have dropped M7 term, to avoid thermally induced vibration. Equation
(52) may be solved approximately by applying Galerkin’s technique to obtain a single-
mode solution.

Since eqn (52) is self-adjoint, with respect to appropriate boundary conditions, the
fundamental frequency can be obtained from Rayleigh~Quotient; also all the frequen-
cies can be determined by Rayleigh-Ritz method.

5 RESULTS AND DISCUSSIONS
For numerical results analysis, we use the material constants as listed in Table
1{15] and assume

N7(¢, m) = T sin(wg) sin(a). (53)

The comparison of results from different hnearized analyses [eqns (51) and (52)]
are illustrated in Figs | and 2 for all-edge simply supported and all-edge clamped plate,
respectively, where frequency parameter A, is an indicator of linear vibrating frequency.

Table 1. Matenal properties [15]
G G C3 Gy V12 oy a
.164 .228 .256 .392 .064 .46a 3.07a

a - coefficient of linear thermal expansion for a reference 1sotropic material

N’r(c.n)ﬂmsin(ﬂi) sin(m), T*=(a/h)*T o
#1: Eq.52, T;‘=1.5

#2: Eq.51, T;"I.S

#3. Eq.52, T;‘].O

#4; EQ.51, T*=1.0

#5: £q.51 & 52, T;'0.0

50 1T
A 12upw:a" /
E;h .
774
30 4
‘ﬂ
10 4
+ + t

1.0 2.0 3.0

a/b
Fig. 1. All-edge simply supported plate
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FE(g.n)=T,sin(nE) sin(m), T2=(a/h)*T 0

#1: Eg.52, T':-3.0
#2: Eq.51, T;*B.O

#3: Eq.52, T¥=0.5 //
100 +  #4: Eq.51, T;=0.5 /'/
#5: Egq.51 & 52, T;‘*0.0 /i "f

a/b
Fig. 2. All-edge clamped plate.

It is shown that at low temperatures, the two analyses offer close results; however, at
higher temperature (T3 = 1.5) and when the aspect ratio is small (a/b < 1.5), there
exist obvious differences between the two analyses. This behavior indicates that at
higher temperature, the frequency of plate lateral motion is influenced by the in-plane
displacements « and v significantly, and the coupling effect should not be neglected.
Here we have done some calculations to find that this is not related to the shape function
chosen or the approximation error.

Figure 3 shows variation of critical buckling temperature for both orthotropic and
isotropic plates with different aspect ratio. It is observed that for isotropic plate, the
temperature decreases when the aspect ratio increases, and the all-edge simply sup-
ported plate has lowest critical temperature. However, for orthotropic plate the critical
temperature, in general, does not necessarily decrease with increasing aspect ratio;
which is due to the anisotropic characteristics of material physical properties.

Under different edge conditions, the relation between nonlinear and linear period
ratio Ta/T, and amplitude Z is illustrated in Fig. 4 for various temperatures. It is seen
that the ratio Tn/T. decreases with increasing amplitude Z, and temperature has the
most significant effect on vibration period for all-edge simply supported plate.

Figure S shows for all-edge simply supported plate, under different initial thermal
displacements z,, the relation of nonlinear and linear frequency ratio and amplitude
for various temperature distributions; where w, is measured at T, = 0. For small initial
displacement (z,) and low temperature (T%), the nonlinear frequency increases with
amplitude; however for large initial displacement (20) and high temperature (75,) the
nonlinear frequency decreases as amplitude increases. When amplitude is small (linear
case), frequency decreases with increasing temperature (#1, 2, 3)(#4, 5, 6, 7). And
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N'T(g,n)ﬂm sin{wg) sin{mn), T;f(a/h)’Tm a

S - simply supported, M - mixed, C - clamped

e Orthotropic

- ———-— 150tropic

.

Fig. 3. Cntical buckling temperature.

W, TSINGE) SINGm), Toea/b? T, 0, afbel.
#~-C, ';;'0.0 #2--C, T=1.0
#--4, T=0.0 #--M, THe1.0
#5--8, ’%—0.0 #6--8, '1;-1.0

"y Y

Y

/Ty,
0.000 0.200 0.400 0.800 0.800

2
L

e

4 o
v -

0.000 0.300 0800 O0.900 1.200 1.500
zl-zz(zo-O)

Fig. 4 Influence of large amplitude on Ta/T, of plate.



Fig. S.

Nonlincar free vibration of heated orthotropic rectangular plates

#1 #2 #3 #4 #5 #6 #7
zg .5 .5 .5 1 1 1. 1
T* 0. 1 2. 0 1 2 3.

W' (g, n) =T SIN(rE) SIN(mn) Tx=(am)? Ty o

-2.000 -1.500 -1.000 -0.500 0.000 0.500
“Z2 zy

1.000 1.500

279

Vanation of frequency vibration of plate with temperature rise and for large-amplitude

simply supported plate (a/b = 1)

Table 2. Results of Ta/T. from different methods

F(t) + aZ(t) + bT*(t) = 0, Z(0) = Z(0) = 0

b/a .3099 .4549 1.498
.9014 .8684 .6902
.8997 .8655 .6956

.5718
.8382
.8383

2.70
.5801
.5794

16.62
2773
.2769

K(k)(Eq.50)
RUKU*

F(t) + 12607(t) + 927.972(t) + 309.3T°(t) = 0, Z(0) = 1(0) = 0

2, .1 .2 .3 .4 .5 .6

zz(Eq.47)
T*(8)(Eq.45)
RUKU*

.10516
.17725
L1772

.22177
.17805
.1780

.35177
.17948
.1795

.49749
.18165
.1816

.66160
.18466
.1822

7
.84670 1.
.18869
.1879

054

.1939
.1917

.8
1.283

.2007

.1949

* Runge-Kutta Method
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BS---Berger's method S
BM---berger's method M
BC---Berger's method C
VS---von Kirman's method S
VM---von Kirmdn's M

VC---von Krman's C

W' (£,n)=constant, -r;zl;-(a/h)2 T, o

0.000 0.500 0.800 0.800 1.200 1.500
zl-zz(zo-O)

Fig. 6. Berger's method vs von Kérman’s theory

for same temperature, distribution frequency increases with initial displacement (zo)
(#2 and #5) or (#3 and #6).

At constant temperature, we may compare the results of von Karman’s theory
with that of Berger’s method, as shown in Fig. 6, which shows that Berger’s analysis
gives satisfactory results.

Finally, in Table 2 we compare the analytical results for the ratio Ta/T. from
method of successive approximation [eqn (45)) and from complete elliptical cosine [eqn
(50)] together with that obtained from numerical analysis method of Runge-Kutta[16],
and we find they all are very close.

6. CONCLUSION

A method of one-term approximation solution is presented to study both the linear
and nonlinear free-vibration behaviors of heated orthotropic rectangular plate under
various boundary conditions. For nonlinear vibration analysis, fundamental equations
of motion are derived from both von Karmén's and Berger’s methods, and are solved
by employing techniques of Galerkin and successive approximation. The linear solu-
tions are obtained either from linearizing von Karman's solutions or from solving de-
coupled single linear equation.

Through our investigations in this paper, the following conclusions are drawn:

(i) Although von Karmén’s analysis generally is quite complex to deal with, we have
presented a relatively simple method to solve for nonlinear free vibration of heated
orthotropic rectangular plate.

(ii) Berger’s approach offers results in good agreement with that from von Kdrmén’s
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theory, yet highly simplifies the analysis. However, for heated orthotropic rec-
tangular-plate analysis, it is restricted to taking N7 = constant, otherwise the
advantages of simplification will not be obtained.

In linearized analysis, the frequency of lateral vibration decreases with increasing
temperature. At low temperatures, to use single linear equation (52) is not only
simple but also gives good results. However, at high temperatures, it is suggested
to use linearized von Kirmian’s solution so as to obtain satisfactory results.

(iv) Because of the anisotropic property of material constants, the critical temperature

does not necessarily decrease with increasing plate aspect ratio. Of the three dif-
ferent edge conditions discussed, the all-edge simply supported plate has the lowest
critical temperature.

(v) The ratio of nonlinear and linear period of plate vibration T, /Ty decreases with

increasing amplitude. Of all the three edge conditions discussed, the vibration

period for all-edge simply supported plate is the most significantly affected by
temperature.

(vi) With zero initial thermal deflection (zo = 0), the frequency of plate vibration in-

&WN—

W

10.
L
12.
13.

14,
15,

creases with amplitude, and the nonlinear and linear period ratio Tn/T, decreases
with increasing temperature. After z, and T}, are increased to certain values, the
frequency of plate vibration decreases with increasing amplitude. Also if the initial
thermal deflection is not zero (zo # 0), then z;, % z,.

REFERENCES

. W. Nowacki, Dynamic Problems of Thermoelasticity. Noordhoff, Leyden, The Netherlands (1975).
. B. A. Boley and J. H. Weiner, Theory of Thermal Stresses. John Wiley, New York (1960).
. R. Cukié, Coupled thermoeleastic vibrations of plates. Arch. Mech. 25(3), 513 (1973).

. W. P. Chang, Coupled thermoelastic vibrations of Mindlin plates. Nat. Sci. Council Monthly 11(9), 802
(1983).

. M. Sunakawa, Influence of temperature changes and large amplitude on free flexural vibration of rec-

tangular elastic plates. Trans. JSME 30, 558 (1964).

. M. C. Pal, Large amplitude free vibration of rectangular plates subjected to aerodynamic heating. J.

Eng. Math. 1), 39 (1970).

. C. D. Bailey, Vibration of thermally stressed plates with various boundary conditions. AIAA J. 11(1),

14 (1973).

. W. P. Chang, Thermally induced coupled vibrations of orthotropic rectangular plates. Chung-yuan J.

12, 50 (1983).

. C. D. Bailey and J. C. Greetham, Free vibrations of thermally stressed orthotropic plates with various

boundary conditions. NASA CR-2147 (1973).
M. C. Pal, Static and dynamic non-linear behavior of heated orthotropic circular plates. Int. J. Nonlinear
Mech. 8, 489 (1973).

H. M. Berger, A new approach to the analysis of large deflections of plates. J. Appl. Mech. 22, 465
(1955).

H. Pasi¢ and G. Herrmann, Nonlinear free vibrations of buckled plates with deformable loaded edges.
J. Sound Vib. 87(1), 105 (1983).

C. 1. Wu and J. R. Vinson, On the nonlinear oscillations of plates composed of composite materials. J.
Compos. Mater. 3, 548 (1969).

H. Parkus, Thermoelasticity. Blaisdell, Waltham (1968).

B. D. Agarwal and L. J. Broutman, Analysis and Pe:formance of Fiber Composites. John Wiley, New
York (1980).

. B. Carnahan and W. A. Luther, Applied Numerical Methods. John Wiley, New York (1977).



